Measure What Matters

Sustainability Data and Reporting

Therese Dorau, City of South Bend Office of Sustainability Charles Farrell, University of Notre Dame

2018 Lean & Green: Sustainable Operations Workshop October 23, 2018

What is "Sustainability"?

Balancing the **environmental**, social equity, and economic needs of our community, today while making sure future generations will have what they need to thrive.

Outline

- Why measure?
- Common Sustainability Impacts and Metrics
- Materiality
- Reporting Frameworks
- Case Study University of Notre Dame
- Exercise Materiality

Why Measure?

Internal

- Make better decisions
- Understand risk
- Track improvement
- Identify waste and opportunity
- Reduce inputs and costs

External

- Brand reputation
- Competition
- Employee retention
- Customer demands
- Recognition/certification
- Corporate values

Impacts to Consider

- Energy use and renewable energy
- Water use and wastewater
- Land use and ecology
- Climate Change
- Waste and Recycling
- Purchasing and supply chain
- Community engagement, human rights
- Labor practices, employee safety, employee well-being
- Corporate governance (policies), avoiding corruption

Example Metrics

- Energy use and renewable energy
- Water use and wastewater
- Land use and ecology
- Climate Change
- Waste and Recycling
- Purchasing and supply chain
- Community engagement, human rights
- Labor practices, employee safety, employee well-being
- Corporate governance (policies), avoiding corruption

mmBTU per \$ revenue

MWh renewable energy generated

% reduction in natural gas use

Example Metrics

- Energy use and renewable energy
- Water use and wastewater
- Land use and ecology
- Climate Change
- Waste and Recycling
- Purchasing and supply chain
- Community engagement, human rights
- Labor practices, employee safety, employee well-being
- Corporate governance (policies), avoiding corruption

Total tons of hazardous waste created

% recycled materials in products

Tons of non-hazardous waste recycled

Example Metrics

- Energy use and renewable energy
- Water use and wastewater
- Land use and ecology
- Climate Change
- Waste and Recycling
- Purchasing and supply chain
- Community engagement, human rights
- Labor practices, employee safety, employee well-being
- Corporate governance (policies), avoiding corruption

% purchases made from local suppliers

Significant impacts in supply chain identified thru supplier audits

Materiality

- "Relevance, Priority"
- Risk management
- Prioritize topics for reporting
 - Significant impact
 - Important to stakeholders
- Other factors
 - Business sector & core business
 - How much control do we have?
 - Strategy
 - Organizational values
 - Data availability (80/20 rule)
 - Location in supply chain
 - Competition

Varies by Sector

Restaurant

OUR 14 KEY FOCUS AREAS

SOCIETY

Engagement

Treating People Fairly

Healthy Eating

Responsible Marketing

ENVIRONMENT

Water Saving

Management

Workplace Resources

Supply

SOURCING

Environmentally Positive Farming

Local & Seasonal

Ethical Meat & Dairy

Fair Trade

Health Care

Conduct an **annual sustainability** review with all national vendors.

Efficiency

Alphabet Soup

- EHS vs CSR vs ESG
 - <u>Environmental Health and Safety</u>
 - <u>Corporate Social Responsibility</u>
 - Environment, Social, Governance
- Compliance
- Risk vs Opportunity
- Stakeholders
 - Regulator/Employee
 - Investors
 - Broad stakeholder group

Reporting Across Sectors

Local Government

University

Reporting Across Sectors

Corporate

Utilizing Data on the Macro and Micro Scale to Drive Carbon Reductions

October 23, 2018

Outline

- > History
- > Services
- Sustainability Strategy
- ➤ Data & Decisions
- > Projects
- ➤ Other Data Uses

- Central Energy production originates in late 1800's
- Adjacent to Main Building
- Steam Plant Only
- ➤ 1881 First University to generate electricity
 - Less than 10 kW to 8 lights in Main Admin.
- Rail line installed in 1896 (Michigan Central Rail) for delivery of coal and campus connection to outside world

- Steam Plant circa1900 to 1931
- Located on current site of St. Liam Hall
- > Steam Plant only

- Current site occupied 1932 adjacent to St. Joseph Lake
- Lake essential resource for plant cooling water
- Steam plant only
- Coal fired, five (5) hand stoked boilers

- 1952 Addition of cogeneration steam turbine and diesel generators
- > Two new coal fired boilers
- ➤ 100% power independent
- The original Green Energy System!

Notre Dame Services and Services Area

Notre Dame Sustainability Strategy

What does our Plan entail?

Energy Conservation Measures (ECM Phase 1, 2, 3 & 4) 2008 and beyond

• \$13.8M invested with aggregate savings of \$20.8M to date

Evolve our Central Plant (2010 Plan)

- Fuel Switching, move from coal to natural gas
- Steam first to Electricity first Combined Heat and Power Operation implement Combustion Turbines
- Increase efficiency and reduce carbon emissions
- Increase capacity to serve campus growth

Change in Plans (2015)

- Laudato Si, Pope Francis's encyclical "On Care for our Common Home"
- Cease use of coal by 2020 develop renewable/recoverable energy sources

Remain flexible and able to respond to technological developments that could support our goals, protect

"Macro" Scale Data

- Energy Inputs
 - Coal, Gas, Oil (MMBtu)
- Emissions (Calculated from Energy Inputs)
- Produced Power/Purchased Power (kWh)
- Potable Water Well Production (MGD)
- Steam Production (klbs)
- Chilled Water Production (tons of chilling capacity)
- Service Area (GSF)
- Costs (Fuel, Purchased Power, Maintenance)

- Fuel Qualities (BTU, Sulfur, Ash)
- Equipment Run Time (hrs)
- Steam Temperature
- Condensate Volume
- Boiler Feedwater
- Make Up Water

"Micro" Scale Data

- Building Consumption
 - Electricity
 - Steam
 - Chilled Water
 - Domestic Cold Water
 - Domestic Hot Water
- Building Automation Systems
 - Heating/Cooling Systems

Data Driven Decisions

Focus your resources

- Low Hanging Fruit...Most Bang Per Buck
 - Lighting:
 - Higher Use Buildings/Rooms
 - T-12 to T-8/T-5 to LED
 - HVAC:
 - Constant Volume Systems to Variable Volume (VFD)
 - Occupancy Sensors
 - Water:
 - "Smart" Sprinkler System

Data Driven Decisions

Then Move To

- Higher Hanging Fruit...A Little Less Bang
 - Lighting: Lower Use Buildings/Rooms
 - HVAC: Replace Pneumatics with Electronic Controls
 - Water: Low Flow Fixtures

Energy Results

Energy Results

Energy Results

Low Carbon Strategies

Combustion Gas Turbines (CGT) with Heat Recovery Steam Generators (HRSG) 2 – 5.5 MW units to provide increased electrical capacity, incremental steam capacity, higher efficiency and continued benefits of CHP approach

Low Carbon Strategies

2-2000 ton Electric Chillers to use the energy produced by the CGT's along with 2 Mgal of thermal storage to make use of off-peak electricity

Renewable/Recoverable Initiatives

East Quad Geothermal

A 300-ton well field estimated to reduce CO2 by 1,336 tons annually

South Campus Geothermal

A 1,000-ton geothermal well field will have the capacity to reduce CO2 by 4,454 tons

Ricci Fields Geothermal

A 1,350 ton well field estimated to reduce CO2 by 6,013 tons

Renewable/Recoverable Initiatives

Kenmore Warehouse Photovoltaic Array

At a warehouse facility owned by the University near the Michiana Regional Airport a ground-mounted PV array has been installed. The system has a rated capacity of 145 KW. This would provide an estimated 122 tons of CO2 reduction on an annual basis.

Renewable/Recoverable Initiatives

Hydroelectric Plant

• A project to build a 2.5MW hydroelectric plant on the St. Joseph River at the South Bend Dam. The project is estimated to produce 7% of campus's current electrical energy usage and would offset nearly 9,710 tons of CO2 annually.

Other Data Uses

- Benchmarking
 - Similar building type comparisons
 - Building Type to Building Type
 - University to University
- "Continuous Commissioning"
 - Discover system anomalies that contribute to energy inefficiencies
- Sustainability Competitions

QUESTIONS?

Data Planning Activity

Materiality

- "Relevance, Priority"
- Risk management
- Prioritize topics for reporting
 - Significant impact
 - Important to stakeholders
- Other factors
 - Business sector & core business
 - How much control do we have?
 - Strategy
 - Organizational values
 - Data availability (80/20 rule)
 - Location in supply chain
 - Competition

Instructions

- Review the sample list of impacts
- Rank impacts from 1 (least) to 5 (most) important to
 - Stakeholders
 - Your core business
- Map impacts on the Materiality Matrix based on the two scores
 - The dark grey quadrant = "critical issue"
- For all critical issues, consider the "Reporting on Critical Issues" questions. Use the blank space to take notes.

Social (S)

Corporate Governance (G)

E1. Direct & Indirect GhG Emissions	S1. CEO Pay Ratio	G1 Board -Separation of Powers
E2. carbon Intensity	S2. Gender Pay Ratio	G2. Board -Transparent Practices
E3. Direct & Indirect Energy Consumption	S3. Employee Turnover Ratio	G3. Incentivized Pay
E4. Energy Intensity	S4. Gender Diversity	G4. Fair Labor Practices
E5. Primary Energy Source	S5. Temporary Worker Ratio	G5. Supplier Code of Conduct
E6. Renewable Energy Intensity	S6. Non-Discrimination Policy	G6. Ethics Code of Conduct
E7. Water Management	S7. Injury Rate	G7. Bribery/ Anti-Corruption Code
E8. Waste Management	S8. Global Health Policy	G8. Tax Transparency
E9. Environmental Policy	S9. Child & Forced Labor Policy	G9. Sustainability Report
E10. Environmental Impacts	S10. Human Rights Policy	G10. Other Framework Disclosures
	S11. Human Rights Violations	G11. External Validation Assurance
	S12. Board - Diversity	

Reporting on Critical Issues

Data availability/quality
Relevance to core business, corporate values
Competitors excel/lack/create baseline
Strategic advantage
Level of control, location in supply chain