Energy Value of Fuels and Variations in Efficiency

Adam Goldstein

Chief Technology and Compliance Officer

Tier 2 Emission standards, FTP 75, g/mi

Bin#	Interme	diate life),000 mi)	Full useful life								
	NMOG*	со	NOx	PM	нсно	NMOG*	СО	NOx†	PM	НСНО		
Temporary Bins												
11 MDPV ^c						0.280	7.3	0.9	0.12	0.032		
10 ^{a,b,d,f}	0.125 (0.160)	3.4 (4.4)	0.4	-	0.015 (0.018)	0.156 (0.230)	4.2 (6.4)	0.6	0.08	0.018 (0.027)		
ga,b,e,f	0.075 (0.140)	3.4	0.2	-	0.015	0.090 (0.180)	4.2	0.3	0.06	0.018		
Permanent Bins												
8 ^b	0.100 (0.125)	3.4	0.14	-	0.015	0.125 (0.156)	4.2	0.20	0.02	0.018		
7	0.075	3.4	0.11	-	0.015	0.090	4.2	0.15	0.02	0.018		
6	0.075	3.4	0.08	-	0.015	0.090	4.2	0.10	0.01	0.018		
5	0.075	3.4	0.05	-	0.015	0.090	4.2	0.07	0.01	0.018		
4	+	-	-/-	-	-/	0.070	2.1	0.04	0.01	0.011		
3	=	(-)	-	-	-	0.055	2.1	0.03	0.01	0.011		
2	-	-	-	-	-	0.010	2.1	0.02	0.01	0.004		
1	-	-	-	-	-	0.000	0.0	0.00	0.00	0.000		

^{*} for diesel fueled vehicle, NMOG (non-methane organic gases) means NMHC (non-methane hydrocarbons)

- a Bin deleted at end of 2006 model year (2008 for HLDTs)
- b The higher temporary NMOG, CO and HCHO values apply only to HLDTs and MDPVs and expire after 2008
- c An additional temporary bin restricted to MDPVs, expires after model year 2008
- d Optional temporary NMOG standard of 0.195 g/mi (50,000) and 0.280 g/mi (full useful life) applies for qualifying LDT4s and MDPVs only
- e Optional temporary NMOG standard of 0.100 g/mi (50,000) and 0.130 g/mi (full useful life) applies for qualifying LDT2s only
- f 50,000 mile standard optional for diesels certified to bins 9 or 10

[†] average manufacturer fleet NOx standard is 0.07 g/mi for Tier 2 vehicles

Impacts on efficiency

Injector precision

Thermodynamics

Timing

Octane rating

Stoichiometric uniformity across all cylinders

Emission controls

Soichiro Honda

Compound Vortex Controlled Combustion

TABLE III

Comparison Steady State Emissions
350 CID CVCC Impala vs. A Stock 1973 350 CID Impala

	HC		co		NOx		CO2	Fue!	Fuel Economy (
	350 CVCC	Stock 350	350 CVCC	Stock 350	350 CVCC	Stock 350	350 CVCC	Stock 350	350 CVCC	Stock 350
Idle (gm/5 min)	0.50	N/A	2.04	N/A	0.21	N/A	424.32	N/A	*	N/A
15 mph (gm/mi)	0.16	0.60	3.30	7.26	0.37	0.52	662.68	620.32	13.3	14.0
30 mph (gm/mi)	0.00	1.22	0.65	9.98	0.53	0.37	542.49	443.44	16.3	19.2
45 mph (gm/mi)	0.00	0.51	0.19	4.71	1.00	0.93	604.73	451.89	14.7	19.3
60 mph (gm/mi)	0.01	0.32	0.53	2,48	3.00	1.78	557.75	487.24	15.9	18.0

- NOTE: a) CVCC data - rear axle ratio: 3.08
 - loading characteristic is per belt-driven Clayton
 Dynamometer set at 14.7 rear wheel Hp at 50 mph
 - b) Stock data - rear axle ratio: 2.73
 - loading characteristic is per belt-driven Clayton
 Dynamometer set at 14.0 rear wheel Hp at 50 mph
 - * 350 CID CVCC Idle Fuel Consumption: 0.58 gal/hr

Why do some fleets report fuel mileage on alternative fuels that does not mathematically equate to energy content?

How do you, as a fleet operator, know what systems will maximize you savings as it relates to energy content of fuel?

Empirical Data!

Don't trust me. Or any other system manufacturer.

Talk to other fleet operators who deploy identical vehicles to yours.

Run a test of a system for four weeks.

Energy Value of Fuels and Variations in Efficiency

Adam Goldstein

Chief Technology and Compliance Officer

